John A. Miller: Google Scholar, Semantic Scholar I. Budak Arpinar: Google Scholar, Semantic Scholar Ninghao Liu: Google Scholar, Semantic Scholar

Publications

2024 Permalink

J. A. Miller, M. Aldosari, F. Saeed, N. H. Barna, S. Rana, I. B. Arpinar, and N. Liu
A Survey of Deep Learning and Foundation Models for Time Series Forecasting
arXiv preprint arXiv:2401.13912, 2024
arXiv Journal bibtex

H. Zhao, H. Chen, F. Yang, N. Liu, H. Deng, H. Cai, S. Wang, D. Yin, and M. Du
Explainability for Large Language Models: A Survey
ACM Transactions on Intelligent Systems and Technology
arXiv Journal bibtex

C. Zhao, W. Qian, Y. Shi, M. Huai, and N. Liu
Automated Natural Language Explanation of Deep Visual Neurons with Large Models
arXiv preprint arXiv:2310.10708
arXiv Journal bibtex

X. Wu, H. Zhou, Y. Shi, W. Yao, X. Huang, and N. Liu
Could Small Language Models Serve as Recommenders? Towards Data-centric Cold-start Recommendation
The Web Conference (WWW), 2024
Conference bibtex

Z. Guan, M. Hu, Z. Zhou, J. Zhang, S. Li, and N. Liu
BadSAM: Exploring Security Vulnerabilities of SAM via Backdoor Attacks
AAAI, 2024 (student abstract)
arXiv Conference bibtex

Y. Wang, K. Zhou, N. Liu, Y. Wang, and X. Wang
Efficient Sharpness-Aware Minimization for Molecular Graph Transformer Models
ICLR, 2024
OpenReview Conference bibtex

2023 Permalink

J. A. Miller, N. H. Barna, S. Rana, I. B. Arpinar, and N. Liu
Knowledge Enhanced Deep Learning: Application to Pandemic Prediction
The 9th IEEE International Conference on Collaboration and Internet Computing, November 1-3, 2023, Atlanta, GA
Talk Conference bibtex
Click for Demo

S. Rana, N. H. Barna, and J. A. Miller
Exploring the Predictive Power of Correlation and Mutual Information in Attention Temporal Graph Convolutional Network for COVID-19 Forecasting
Proceedings of the 12th International Conference on Big Data (BigData 2023), Lecture Notes in Computer Science (LNCS, volume 14203), Honolulu, Hawaii (September 23-25, 2023) pp. 18-33
Springer Conference bibtex

A. Farhadi, D. Chen, R. McCoy, C. Scott, P. Ma, C. M. Vachon, J. Zhang, C. Ngufor, and J. A. Miller
Classification Using Deep Transfer Learning on Structured Healthcare Data
2023 IEEE Symposium Series on Computational Intelligence (SSCI), 1560-1565, Mexico City, Mexico (05-08 December 2023)
IEEE Conference bibtex

J. A. Miller
Introduction to Computational Data Science Using ScalaTion
School of Computing, University of Georgia, 2023
UGA Online Book bibtex

M. Aldosari, and J. A. Miller
On Transformer Autoregressive Decoding for Multivariate Time Series Forecasting
Proceedings of the 31st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2023), Bruges, Belgium (October 4-6, 2023) pp. 423-428
ESANN Conference bibtex

H. Cai, W. Liao, Z. Liu, Y. Zhang, X. Huang, S. Ding, H. Ren, Z. Wu, H. Dai, S. Li, L. Wu, N. Liu, Q. Li, T. Liu, and X. Li
Coarse-to-fine Knowledge Graph Domain Adaptation based on Distantly-supervised Iterative Training
International Conference on Bioinformatics and Biomedicine (BIBM)
arXiv Conference bibtex

Y. Shi, M. Du, X. Wu, Z. Guan, and N. Liu
Black-box Backdoor Defense via Zero-shot Image Purification
2023 Conference on Neural Information Processing Systems (NeurIPS 2023)
arXiv Conference bibtex

Y. Shi, Y. Dong, Q. Tan, J. Li, and N. Liu
GiGaMAE: Generalizable Graph Masked Autoencoder via Collaborative Latent Space Reconstruction
Proceedings of the 32nd ACM International Conference on Information and Knowledge Management
arXiv Conference bibtex

Z. Guan, M. Du, and N. Liu
XGBD: Explanation-Guided Graph Backdoor Detection
26th European Conference on Artificial Intelligence (ECAI 2023)
arXiv Conference bibtex

Y. Shi, K. Zhou, and N. Liu
ENGAGE: Explanation Guided Data Augmentation for Graph Representation Learning
Joint European Conference on Machine Learning and Knowledge Discovery in Databases
arXiv Conference bibtex

G. Wang, M. Du, N. Liu, N. Zou, and X. Hu
Mitigating Algorithmic Bias with Limited Annotations
Joint European Conference on Machine Learning and Knowledge Discovery in Databases
arXiv Conference bibtex

X. Wu, X. He, T. Liu, N. Liu, and X. Zhai
Matching Exemplar as Next Sentence Prediction (MeNSP): Zero-Shot Prompt Learning for Automatic Scoring in Science Education
International Conference on Artificial Intelligence in Education
Springer Conference bibtex

K. Zhou, S.-H. Choi, Z. Liu, N. Liu, F. Yang, R. Chen, L. Li, and X. Hu
Adaptive Label Smoothing To Regularize Large-Scale Graph Training
Proceedings of the 2023 SIAM International Conference on Data Mining (SDM)
Springer Conference bibtex

Y. Dong, S. Wang, J. Ma, N. Liu, and J. Li
Interpreting Unfairness in Graph Neural Networks via Training Node Attribution
Proceedings of the AAAI Conference on Artificial Intelligence
ArXiv Conference bibtex

L. Hu, Y. Liu, N. Liu, M. Huai, L. Sun, and D. Wang
SEAT: Stable and Explainable Attention
Proceedings of the AAAI Conference on Artificial Intelligence
ArXiv Conference bibtex

Q. Tan, N. Liu, X. Huang, S.-H. Choi, L. Li, R. Chen, X. Hu
S2GAE: Self-Supervised Graph Autoencoders are Generalizable Learners with Graph Masking
Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining
ACM Conference bibtex

Q. Tan, X. Zhang, N. Liu, D. Zha, L. Li, R. Chen, S.-H. Choi, and X. Hu
Bring Your Own View: Graph Neural Networks for Link Prediction with Personalized Subgraph Selection
Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining
arXiv Conference bibtex

Q. Tan, D. Zha, N. Liu, S.-H. Choi, L. Li, R. Chen, and X. Hu
Double Wins: Boosting Accuracy and Efficiency of Graph Neural Networks by Reliable Knowledge Distillation
IEEE International Conference on Data Mining (ICDM), 2023
openReview Conference bibtex

Z. Guan, L. Sun, M. Du, and N.Liu
Attacking Neural Networks with Neural Networks: Towards Deep Synchronization for Backdoor Attacks
The Conference on Information and Knowledge Management (CIKM), 2023
ACM Conference bibtex

G. Wang, Z. Liu, Z. Jiang, N. Liu, N. Zou, and X. Hu
DIVISION: Memory Efficient Training via Dual Activation Precision
International Conference on Machine Learning (ICML), 2023
arXiv Conference bibtex

S. Zhou, X. Huang, N. Liu, F.-L. Chung, and L.-K. Huang
Improving Generalizability of Graph Anomaly Detection Models via Data Augmentation
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2023
arXiv Journal bibtex

R. Tang, Q. Feng, N. Liu, F. Yang, and X. Hu
Did You Train on My Dataset? Towards Public Dataset Protection with Clean-Label Backdoor Watermarking
SIGKDD Exploration Newsletter, 2023
arXiv Journal bibtex

X. Wu, K. Zhou, M. Sun, X. Wang, and N. Liu
A Survey of Graph Prompting Methods: Techniques, Applications, and Challenges
arXiv Preprint, 2023
arXiv Article bibtex

2022 Permalink

C. Bowman, J. A. Miller, and Y. Wang
Microscopic Vehicular Traffic Simulation: Toward Online Calibration
Proceedings of the 2022 IEEE/ACM Winter Simulation Conference (WSC 2022), Singapore (December 11-14, 2022) pp. 2234-2245
IEEE Conference bibtex

M. Iman, J. A. Miller, K. Rasheed, R. M. Branch, and H. R. Arabnia
EXPANSE: A Continual and Progressive Learning System for Deep Transfer Learning
Proceedings of the 2022 International Conference on Computational Science and Computational Intelligence (CSCI 2022) Las Vegas, Nevada (December 14-16, 2022) pp. 58-65
arXiv Conference bibtex

J. A. Miller, and R. Mahmud
Research Directions in Process Modeling and Mining Using Knowledge Graphs and Machine Learning
Proceedings of the 19th International Conference on Services Computing (SCC 2022), Lecture Notes in Computer Science (LNCS, volume 13738), Honolulu, Hawaii (December 10-14, 2022) pp. 86-100
Springer Conference bibtex

X. Han, Z. Jiang, N. Liu, and X. Hu
G-Mixup: Graph Data Augmentation for Graph Classification
International Conference on Machine Learning (ICML), 2022 - awarded an Outstanding Paper Award at ICML 2022.
arXiv Conference bibtex

Y. Wang, K. Zhou, R. Miao, N. Liu, and X. Wang
AdaGCL: Adaptive Subgraph Contrastive Learning to Generalize Large-scale Graph Training
Proceedings of the 31st ACM International Conference on Information & Knowledge Management
ACM Conference bibtex

Y. Dong, N. Liu, B. Jalaian, and J. Li
EDITS: Modeling and Mitigating Data Bias for Graph Neural Networks
Proceedings of the ACM Web Conference, 2022
arXiv Conference bibtex

Z. Yang, N. Liu, X. B. Hu, and F. Jin
Tutorial on Deep Learning Interpretation: A Data Perspective
Proceedings of the 31st ACM International Conference on Information & Knowledge Management
ACM Conference bibtex

W. Song, Y. Dong, N. Liu, and J. Li
GUIDE: Group Equality Informed Individual Fairness in Graph Neural Networks
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
ACM Conference bibtex

Q. Feng, N. Liu, F. Yang, R. Tang, M. Du, and X. Hu
DEGREE: Decomposition Based Explanation For Graph Neural Networks
International Conference on Learning Representations (ICLR)
arXiv Conference bibtex

X. Han, Z. Jiang, N. Liu, Q. Song, J. Li, and X. Hu
Geometric Graph Representation Learning via Maximizing Rate Reduction
International Conference on Learning Representations (ICLR)
ACM Conference bibtex

N. Liu, Q. Feng, and X. Hu
Interpretability in Graph Neural Networks
Graph Neural Networks: Foundations, Frontiers, and Applications
Github Book Chapter bibtex

S. Zhou, X. Huang, N. Liu, Q. Tan, F.-L. Chung
Unseen Anomaly Detection on Networks via Multi-hypersphere Learning
Proceedings of the 2022 SIAM International Conference on Data Mining (SDM)
Siam Conference bibtex

M. Wan, D. Zha, N. Liu, and N. Zou
Modeling Techniques for Machine Learning Fairness: A Survey
Transactions on Knowledge Discovery from Data (TKDD), 2022
arXiv Journal bibtex

2021 Permalink

M. Toutiaee, X. Li, Y. Chaudhari, S. Sivaraja, A. Venkataraj, I. Javeri, Y. Ke, I. B. Arpinar, N. Lazar, and J. A. Miller
Improving COVID-19 Forecasting using Exogenous Variables
Proceedings of the 7th ACM KDD Workshop on Mining and Learning from Time Series (MileTS 2021) Virtual/Singapore (August 2021) pp. 1-6
arXiv Conference bibtex

Y. Chaudhari, I. Javeri, I. B. Arpinar, J. A. Miller, X. Li, B. Li, Y. Ke, M. Toutiaee, and N. Lazar
Enhance COVID-19 Mortality Prediction with Human Mobility Trend and Medical Information
Proceedings of the 7th IEEE International Conference on Data Science and Systems DSS 2021), Virtual/Haikou, Hainan, China, (December 2021) pp. 1-8
IEEE Conference bibtex

I. Javeri, M. Toutiaee, I. B. Arpinar, T. Miller, and J. Miller
Improving Neural Networks for Time Series Forecasting using Data Augmentation and AutoML
Proceedings of the 7th IEEE International Conference on Big Data Computing Service and Machine Learning Application (BigDataService 2021), Virtual/Oxford, United Kingdom (August 2021) pp. 1-8
IEEE Conference bibtex

N. Liu, M. Du, R. Guo, H. Liu, and X. Hu
Adversarial Attacks and Defenses: An Interpretation Perspective
ACM SIGKDD Explorations Newsletter
arXiv Journal bibtex

Q. Tan, J. Zhang, N. Liu, X. Huang, H. Yang, J. Zhou, and X. Hu
Dynamic Memory based Attention Network for Sequential Recommendation
Proceedings of the AAAI Conference on Artificial Intelligence
arXiv Conference bibtex

F. Yang, N. Liu, M. Du, and X. Hu
Generative Counterfactuals for Neural Networks via Attribute-Informed Perturbation
SIGKDD Exploration Newsletter, 2021
arXiv Journal bibtex

M. Du, N. Liu, F. Yang, and X. Hu
Learning Credible DNNs via Incorporating Prior Knowledge and Model Local Explanation
Knowledge and Information Systems (KAIS), 2021
arXiv Conference bibtex

Q. Tan, J. Zhang, N. Liu, X. Huang, H. Yang, J. Zhou, and X. Hu
ExAD: An Ensemble Approach for Explanation-based Adversarial Detection
arXiv Preprint, 2021
arXiv Preprint bibtex

W. Fu, M. Wang, M. Du, N. Liu, S. Hao, and X. Hu
Differentiated Explanation of Deep Neural Networks with Skewed Distributions
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
IEEE Conference bibtex

Q. Tan, J. Zhang, J. Yao, N. Liu, J. Zhou, H. Yang, and X. Hu
Sparse-Interest Network for Sequential Recommendation
WSDM'21: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, March 2021, Pages 598–606
arXiv Conference bibtex